Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3357, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336906

RESUMO

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Assuntos
Drosophila , Epilepsia , Canais de Potássio Ativados por Sódio , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Modelos Animais , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Transgenes
2.
Metabolites ; 13(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37233683

RESUMO

Aneuploidy, or having a disrupted genome, is an aberration commonly found in tumours but rare in normal tissues. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift, which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we investigated the changes in transcription in response to ongoing changes to ploidy (chromosomal instability, CIN). We noticed changes in genes affecting one-carbon metabolism, specifically those affecting the production and use of s-adenosyl methionine (SAM). The depletion of several of these genes has led to cell death by apoptosis in CIN cells but not in normal proliferating cells. We found that CIN cells are particularly sensitive to SAM metabolism at least partly because of its role in generating polyamines. Feeding animals spermine was seen to rescue the cell death caused by the loss of SAM synthase in CIN tissues. The loss of polyamines led to decreased rates of autophagy and sensitivity to reactive oxygen species (ROS), which we have shown to contribute significantly to cell death in CIN cells. These findings suggest that a well-tolerated metabolic intervention such as polyamine inhibition has the potential to target CIN tumours via a relatively well-characterised mechanism.

3.
Acta Paediatr ; 112(2): 273-276, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36271909

RESUMO

Sudden infant death syndrome (SIDS) occurs more often in male than in female infants, suggesting involvement of the X-chromosome. Histopathological studies have suggested that altered expression of the Neurokinin-1 receptor may also play a role in the pathogenesis of SIDS. It was hypothesised that genetic variants in three X-chromosome-encoded microRNA (miRNA/miR), known to down-regulate expression of the Neurokinin-1 receptor, may contribute to SIDS. AIM: To identify sequence variants in the miRNAs within a study cohort (27 cases of SIDS and 28 controls) and determine if there was a difference in the frequencies in male and female SIDS infants. METHODS: Genomic DNA prepared from stored blood spots was amplified and sequenced to identify genetic variants in miR500A, miR500B and miR320D2. RESULTS: No novel variants in the miRNAs were identified in our study cohort. We identified one known single-nucleotide polymorphism (SNP) in miR320D2: rs5907732 G/T, in both cases and controls. No significant difference in the SNP frequency was observed between male and female SIDS cases. CONCLUSION: This pilot study suggests that sequence variants in three miRNAs do not contribute to the reported higher prevalence of SIDS in male infants and do not contribute to the pathogenesis of SIDS in our cohort.


Assuntos
MicroRNAs , Morte Súbita do Lactente , Lactente , Humanos , Masculino , Feminino , Receptores da Neurocinina-1/genética , Morte Súbita do Lactente/genética , Morte Súbita do Lactente/epidemiologia , MicroRNAs/genética , Projetos Piloto , Polimorfismo de Nucleotídeo Único
4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499459

RESUMO

KCNT1 (K+ channel subfamily T member 1) is a sodium-activated potassium channel highly expressed in the nervous system which regulates neuronal excitability by contributing to the resting membrane potential and hyperpolarisation following a train of action potentials. Gain of function mutations in the KCNT1 gene are the cause of neurological disorders associated with different forms of epilepsy. To gain insights into the underlying pathobiology we investigated the functional effects of 9 recently published KCNT1 mutations, 4 previously studied KCNT1 mutations, and one previously unpublished KCNT1 variant of unknown significance. We analysed the properties of KCNT1 potassium currents and attempted to find a correlation between the changes in KCNT1 characteristics due to the mutations and severity of the neurological disorder they cause. KCNT1 mutations identified in patients with epilepsy were introduced into the full length human KCNT1 cDNA using quick-change site-directed mutagenesis protocol. Electrophysiological properties of different KCNT1 constructs were investigated using a heterologous expression system (HEK293T cells) and patch clamping. All mutations studied, except T314A, increased the amplitude of KCNT1 currents, and some mutations shifted the voltage dependence of KCNT1 open probability, increasing the proportion of channels open at the resting membrane potential. The T314A mutation did not affect KCNT1 current amplitude but abolished its voltage dependence. We observed a positive correlation between the severity of the neurological disorder and the KCNT1 channel open probability at resting membrane potential. This suggests that gain of function KCNT1 mutations cause epilepsy by increasing resting potassium conductance and suppressing the activity of inhibitory neurons. A reduction in action potential firing in inhibitory neurons due to excessively high resting potassium conductance leads to disinhibition of neural circuits, hyperexcitability and seizures.


Assuntos
Epilepsia , Proteínas do Tecido Nervoso , Humanos , Canais de Potássio Ativados por Sódio/genética , Células HEK293 , Proteínas do Tecido Nervoso/metabolismo , Epilepsia/genética , Mutação , Potássio/metabolismo
5.
Sci Rep ; 7(1): 12618, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974734

RESUMO

DEPDC5 mutations have recently been shown to cause epilepsy in humans. Evidence from in vitro studies has implicated DEPDC5 as a negative regulator of mTORC1 during amino acid insufficiency as part of the GATOR1 complex. To investigate the role of DEPDC5 in vivo we generated a null mouse model using targeted CRISPR mutagenesis. Depdc5 homozygotes display severe phenotypic defects between 12.5-15.5 dpc, including hypotrophy, anaemia, oedema, and cranial dysmorphology as well as blood and lymphatic vascular defects. mTORC1 hyperactivity was observed in the brain of knockout embryos and in fibroblasts and neurospheres isolated from knockout embryos and cultured in nutrient deprived conditions. Heterozygous mice appeared to be normal and we found no evidence of increased susceptibility to seizures or tumorigenesis. Together, these data support mTORC1 hyperactivation as the likely pathogenic mechanism that underpins DEPDC5 loss of function in humans and highlights the potential utility of mTORC1 inhibitors in the treatment of DEPDC5-associated epilepsy.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Convulsões/genética , Animais , Encéfalo/fisiopatologia , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Convulsões/fisiopatologia , Transdução de Sinais/genética
6.
J Med Genet ; 53(4): 217-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26740507

RESUMO

Mutations in the sodium-gated potassium channel subunit gene KCNT1 have recently emerged as a cause of several different epileptic disorders. This review describes the mutational and phenotypic spectrum associated with the gene and discusses the comorbidities found in patients, which include intellectual disability and psychiatric features. The gene may also be linked with cardiac disorders. KCNT1 missense mutations have been found in 39% of patients with the epileptic encephalopathy malignant migrating focal seizures of infancy (MMFSI), making it the most significant MMFSI disease-causing gene identified to date. Mutations in KCNT1 have also been described in eight unrelated cases of sporadic and familial autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE). These patients have a high frequency of associated intellectual disability and psychiatric features. Two mutations in KCNT1 have been associated with both ADNFLE and MMFSI, suggesting that the genotype-phenotype relationship for KCNT1 mutations is not straightforward. Mutations have also been described in several patients with infantile epileptic encephalopathies other than MMFSI. Notably, all mutations in KCNT1 described to date are missense mutations, and electrophysiological studies have shown that they result in increased potassium current. Together, these genetic and electrophysiological studies raise the possibility of delivering precision medicine by treating patients with KCNT1 mutations using drugs that alter the action of potassium channels to specifically target the biological effects of their disease-causing mutation. Such trials are now in progress. Better understanding of the mechanisms underlying KCNT1-related disease will produce further improvements in treatment of the associated severe seizure disorders.


Assuntos
Epilepsias Parciais/genética , Epilepsia/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Epilepsias Parciais/patologia , Epilepsia/classificação , Epilepsia/patologia , Humanos , Deficiência Intelectual/patologia , Mutação , Canais de Potássio Ativados por Sódio
7.
Ann Neurol ; 79(1): 120-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505888

RESUMO

OBJECTIVE: Focal epilepsies are the most common form observed and have not generally been considered to be genetic in origin. Recently, we identified mutations in DEPDC5 as a cause of familial focal epilepsy. In this study, we investigated whether mutations in the mammalian target of rapamycin (mTOR) regulators, NPRL2 and NPRL3, also contribute to cases of focal epilepsy. METHODS: We used targeted capture and next-generation sequencing to analyze 404 unrelated probands with focal epilepsy. We performed exome sequencing on two families with multiple members affected with focal epilepsy and linkage analysis on one of these. RESULTS: In our cohort of 404 unrelated focal epilepsy patients, we identified five mutations in NPRL2 and five in NPRL3. Exome sequencing analysis of two families with focal epilepsy identified NPRL2 and NPRL3 as the top candidate-causative genes. Some patients had focal epilepsy associated with brain malformations. We also identified 18 new mutations in DEPDC5. INTERPRETATION: We have identified NPRL2 and NPRL3 as two new focal epilepsy genes that also play a role in the mTOR-signaling pathway. Our findings show that mutations in GATOR1 complex genes are the most significant cause of familial focal epilepsy identified to date, including cases with brain malformations. It is possible that deregulation of cellular growth control plays a more important role in epilepsy than is currently recognized.


Assuntos
Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Exoma , Perfilação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Mutação , Linhagem , Análise de Sequência de DNA
8.
Epilepsia ; 56(9): e114-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122718

RESUMO

Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.


Assuntos
Epilepsias Parciais/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Canais de Potássio Ativados por Sódio , Morte Súbita do Lactente/genética
9.
Ann Neurol ; 75(5): 782-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24585383

RESUMO

We recently identified DEPDC5 as the gene for familial focal epilepsy with variable foci and found mutations in >10% of small families with nonlesional focal epilepsy. Here we show that DEPDC5 mutations are associated with both lesional and nonlesional epilepsies, even within the same family. DEPDC5-associated malformations include bottom-of-the-sulcus dysplasia (3 members from 2 families), and focal band heterotopia (1 individual). DEPDC5 negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in cell growth. The clinicoradiological phenotypes associated with DEPDC5 mutations share features with the archetypal mTORopathy, tuberous sclerosis, raising the possibility of therapies targeted to this pathway.


Assuntos
Encéfalo/anormalidades , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Mutação/genética , Proteínas Repressoras/genética , Serina-Treonina Quinases TOR/genética , Adulto , Criança , Feminino , Proteínas Ativadoras de GTPase , Humanos , Masculino , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...